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Recent measurements of the short-wavelength ��1–100 nm� fluctuations in stacks of lipid membranes have
revealed two distinct relaxations: a fast one �decay rate of �0.1 ns−1�, which fits the known baroclinic mode of
bulk lamellar phases, and a slower one ��1–10 �s−1� of unknown origin. We show that the latter is accounted
for by an overdamped capillary mode, depending on the surface tension of the stack and its anisotropic
viscosity. We thereby demonstrate how the dynamic surface tension of membrane stacks could be extracted
from such measurements.
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Self-assembled stacks of membranes are encountered in
various industrial and biological systems. They consist of
parallel bilayers of amphiphilic molecules separated by mi-
croscopic layers of solvent—a structure with the symmetry
of a smectic-A liquid crystal �1�. Such stacks form lyotropic
lamellar phases �2�, on which many cleaning and cosmetic
products are based. Lamellar bodies are found also in the
lung �3� and as multilayer vesicles �“onions”� �4�. Membrane
stacks made of phospholipids have been widely used to study
properties of biological membranes, whereby the large num-
ber of identical, equally spaced membranes helps enhance
the signal and allows the study of membrane-membrane in-
teractions �e.g., �5��.

The elasticity of membrane stacks is equivalent to that of
single-component �thermotropic� smectics �1� and has been
extensively studied. The elastic moduli of the stack can be
extracted from its equilibrium fluctuations using, e.g., x-ray
line shape analysis �6�. By contrast, the hydrodynamics of
membrane stacks �7,8�, because of their two micro-phase-
separated components, differs from that of thermotropic
smectics �9�. An additional hydrodynamic mode appears—
the baroclinic �slip� mode—along with a unique dissipation
mechanism, in which the membranes and solvent layers de-
velop different average velocities �7�. Experimental studies
of hydrodynamic modes in membrane stacks have been
rather scarce, the prevalent technique being dynamic light
scattering �8�, whose spatial resolution is limited by the
wavelength of light.

In a recent experiment using neutron spin-echo spectrom-
etry, Rheinstädter, Häussler, and Salditt �RHS� have provided
a first look at the relaxation of membrane stacks at short
wavelengths �1–100 nm� and short times �1–103 ns� �10�.
Their system consisted of several thousands of dimyris-
toylphosphatidylcholine �DMPC� phospholipid bilayers, self-
assembled into a stack of d�5 nm periodicity. The system
was studied at temperatures above and below the lipid melt-

ing point, corresponding to fluid and gel-like membranes,
respectively. In both cases the measured dynamics consisted
of two distinct exponential relaxations. The dispersion rela-
tion of the faster relaxation �decay rate of �0.1 ns−1� could
be well fitted in the fluid-membrane case to that of the baro-
clinic mode of a bulk lamellar phase �11�, while the slower
mode �decay rate of �1–10 �s−1� was left unexplained. We
demonstrate below that this slower relaxation is well ac-
counted for by a surface mode—i.e., a perturbation which is
localized within a finite penetration depth from the surface of
the stack.

In a recent publication �12� we have addressed the surface
dynamics of membrane stacks, highlighting the qualitative
differences from the surface dynamics of both simple liquids
and thermotropic smectics �13�. These differences arise from
the slip dissipation mechanism, which is absent in simple
liquids and thermotropic smectics, but is usually dominant in
lyotropic lamellar phases. Although the formulation in Ref.
�12� is general, its analysis is focused on a very different
domain �larger wavelengths and slower rates� from that
sampled by RHS. In that domain the slip dissipation domi-
nates and, consequently, the surface relaxation is governed
by an overdamped diffusive mode, whose decay rate � in-
creases quadratically with the wavevector q. In this Brief
Report we present a slight adaptation of that theory for a
large-q, high-� regime such as that of RHS.

The general surface dynamics of membrane stacks is quite
complex, depending on several restoring and dissipation
mechanisms �12�. Three moduli are associated with the re-
storing forces: the compression modulus B, bending modulus
K, and surface tension �. Viscous dissipation is characterized
�in the limit of incompressible flow� by three viscosity coef-
ficients �7�, denoted �M, �T, and �V. The coefficient �M,
associated with differences in the lateral velocity across lay-
ers �sliding viscosity�, is much smaller than the other two,
which correspond to the viscous response to deformations of
the lipid membranes. We use the parameter �=2��T

+�V� /�M to characterize this viscosity anisotropy; it is typi-
cally of order 102–103 �7,14�. The aforementioned slip mo-
tion requires another transport coefficient �7�, �
�d2 / �12�0�, where �0 is the viscosity of the solvent �water�
layer.
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In view of this richness it is helpful to begin by identify-
ing the dominant contributions to the slower mode of Ref.
�10�. First, for the typical parameters of that case—
q�10−1 nm−1, ��1 �s−1, �M�10−2 Pa s, and mass density
��1 g/cm3—one gets a negligible Reynolds number
Re��� / ��Mq2��10−5, implying that inertial modes �13�
are irrelevant in the current case. Second, to determine the
dominant dissipation mechanism one should compare the
friction due to slip, �−1v �v being a characteristic relative
velocity�, with that due to viscous stresses, �T,Vq2v; i.e., the
dimensionless parameter S= ��M�q2�−1 is to be compared
with � �12�. We find S�10��. Thus, unlike the mode
focused on in Ref. �12�, in the current large-q case viscous
dissipation is dominant. Finally, the relative importance of
the three restoring mechanisms depends not only on the sur-
face perturbation wavevector q, but also on its penetration
depth �−1. Since the value of � is unknown a priori, all three
mechanisms should be considered in principle. However, to
keep the analysis as simple as possible we shall assume that
the surface tension is the dominant factor. This ansatz is
motivated by the experimental fact that the rate of RHS’s
slower mode is linear in �q� at small q �see Fig. 1�; the way to
get such a linear overdamped dispersion relation is to bal-
ance a surface tension stress against a viscous one, �q2u
��q�u �u being the amplitude of the surface deformation�.
We will return to the consistency of this assumption later on.

The continuum theory formulated in Ref. �12� is valid for
wavelengths much larger than the intermembrane spacing,
qd�1. RHS’s experiment, however, samples the range
0.1�qd�4. To obtain an extrapolation of the analysis to
large q we introduce one last modification to the theory—the
distance z from the surface into the stack is discretized,
z→−dn �n=0,1 ,2 , . . . �, turning the differential equations of
Ref. �12� into finite-difference ones �similar to the analysis of
high-q acoustic modes in a crystal�. The lateral position x
parallel to the membranes is kept continuous, and we con-
sider, for simplicity, a surface perturbation which is uniform
in the second lateral direction y.

Within these assumptions Eq. �11� of Ref. �12� yields the
following surface mode for the vertical displacements of the
membranes, un�x , t�:

un = �C+e−�+dn + C−e−�−dn�eiqx−�t,

�± =
2

d
sinh−1�1

2
�±1/2�q�d	 . �1�

For sufficiently small q �qd��−1/2� the spatial decay coef-
ficients are �±��±1/2 �q�; i.e., the mode contains two terms
of disparate penetration depths, �−

−1��+
−1. �A qualitatively

similar result was obtained for the surface mode analyzed in
Ref. �12�, yet in the current case the origin of the two differ-
ing penetration depths is the large viscosity anisotropy rather
than the strong slip dissipation.� In the other limit of
qd��1/2, as expected, both contributions become localized
within a distance of order d from the surface, �±
��2/d�ln��±1/2 �q �d�.

The dispersion relation ��q� is set by the boundary con-
ditions for the stress tensor at the stack surface, as summa-
rized in Eq. �13� of Ref. �12�. Substituting in that equation
the expressions for �± obtained above, we get, within the
same approximations,

��q� =
2�

��Md

sinh−1�1

2
�1/2�q�d	 + sinh−1�1

2
�−1/2�q�d	� .

�2�

Equation �2� is the main result of our current analysis. For
large wavelengths this dispersion relation becomes

��qd � �−1/2� �
�

2��M��T + �V�/2�1/2 �q� . �3�

Equation �3� is equivalent to the dispersion relation of an
overdamped capillary mode at the surface of a simple liquid
having effective viscosity �eff= ��M��T+�V� /2�1/2. In the
opposite, short-wavelength limit we get

��qd � �1/2� �
�

��T + �V�d/2
ln��q�d� . �4�

In this quasi-two-dimensional limit the dependence on the
smaller �sliding� viscosity, �M, disappears, and an effective
two-dimensional viscosity emerges, �2D= ��T+�V�d /2 �15�.

Figure 1 shows fits of the dispersion relations for the
slower mode, as measured by RHS, to Eq. �2� �16�. �The
measurements for q	0.5 nm−1 are considered less reliable
due to scattering by defects in the stack �10�.� The stack
periodicity was measured as d=5.4 and 5.6 nm at tempera-
tures T=30 °C �fluid membranes� and 19 °C �gel-like mem-
branes�, respectively �10�. The value of the sliding viscosity
at 30 °C, �M=0.016 Pa s, was independently found from a
fit of the faster mode �10�. We are thus left with two fitting
parameters in Eq. �2�, � and �. For the fluid-membrane case
we find �=110 and �=5.4 mN/m. It should be stressed that
having two free parameters does not allow for accurate de-
termination of both, and these values should be regarded
merely as rough estimates. Nonetheless, the fitted values are
of the correct scale. The value for � implies �T,V���M
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FIG. 1. Dispersion relations for the slower relaxation mode of
stacks of DMPC lipid membranes at 30 °C �circles� and 19 °C
�squares�. �Data taken from Ref. �10�.� The solid lines are fits to Eq.
�2� with d=5.4 nm, �M=0.016 Pa s, �=110, and �=5.4 mN/m
�lower curve�; d=5.6 nm, �M=0.016 Pa s, �=350, and �
=28 mN/m �upper curve�. The values of d and �M are taken from
Ref. �10�; � and � are fitting parameters.
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�1 Pa s, i.e., a viscosity three orders of magnitude larger
than that of water, which matches the typical effective vis-
cosity of lipid membranes �17�. It also implies an effective
two-dimensional viscosity �2D��T,Vd�10−9–10−8 Pa s m,
which agrees well with measurements of the surface viscos-
ity of fluid DMPC membranes �18�.

The applicability of the theory to stacks of solid, gel-like
membranes should be questioned, as such stacks have addi-
tional intramembrane elasticity. The same concern, in fact,
should be raised regarding the fluid-membrane case as well,
since at the high frequencies considered here the individual
membranes are expected to have a viscoelastic response. The
fits obtained in Fig. 1 �in particular, the linear behavior for
small q� suggest, however, that these additional restoring
forces are negligible compared to the surface tension and do
not affect the surface relaxation. The fit for T=19 °C yields
significantly larger values for both the viscosity anisotropy
and the surface tension, �=350 and �=28 mN/m, which is
the expected trend for stiffer membranes �19�. �In the fit we
have assumed that the sliding viscosity �M does not change
much with temperature.�

The elasticity of membrane stacks gives rise to an effec-
tive static surface tension, �el= �KB�1/2 �1,20,21�. The values
of K and B in the fluid-membrane state were extracted by
RHS from the fit of the faster mode as K�1.15
10−11 N
�corresponding to a membrane bending modulus �=Kd
�14.8kBT� and B�1.08
107 Pa. This yields �el
�11.1 mN/m, which is of the same order of magnitude as
the high-frequency surface tension fitted above �22�.

We now return to check the self-consistency of our as-
sumptions. First, for a mode to be a surface one, its penetra-
tion depth must be smaller than the total thickness of the
sample. The penetration depth found in Eq. �1� is �−

−1

��1/2 /q�102 nm, which is at least one to two orders of

magnitude smaller than the thickness of RHS’s films
��10 �m�. Second, for surface tension to be the dominant
restoring force, one should have �	�el. This condition can
be obtained rigorously �24�, but is also realized upon de-
manding that the stress arising from surface tension, �q2�u,
be larger than both the compression one, B�2u, and the bend-
ing one, Kq4u. As described above, we actually have �
��el and, thus, the assumption can be only marginally ful-
filled. Moreover, the omission of the bending terms requires
also that Kq2 /�M be smaller than � �12�, which is satisfied
only for the lowest end of the sampled q range, q
�0.1 nm−1. The apparent success of the simplified theory
over the extended q range �Fig. 1�, therefore, is somewhat
surprising. We note that the stacks of RHS are densely
packed. The thickness of a DMPC bilayer at 30 °C is 4.5 nm
�25�, implying that the solvent layers in between membranes
are only 1 nm thick. For such density and high-q surface
perturbations the stack might not follow the usual description
of linear smectic elasticity, but respond merely as an aniso-
tropic viscous liquid with surface tension.

In summary, the relaxation of nanoscale fluctuations in
finite membrane stacks seems to occur via two distinct over-
damped modes—a bulk baroclinic mode and a slower sur-
face mode. The dispersion relation of the surface mode pro-
vides access to the dynamic surface tension of the stack,
which should be hard to measure otherwise. Supplementing
such an experiment with measurements at larger wavelengths
�e.g., using dynamic light scattering�, yielding a value for �,
may allow the accurate extraction of the dynamic surface
tension.
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